MA8551- ALGEBRA AND NUMBER THEORY Syllabus 2017 Regulation

0
1523

MA8551- ALGEBRA AND NUMBER THEORY Syllabus 2017 Regulation

MA8551- ALGEBRA AND NUMBER THEORY Syllabus 2017 Regulation

MA8551                        ALGEBRA AND NUMBER THEORY                                 L T P C
                                                                                                                            4 0 0 4
OBJECTIVES:

  • To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
  • To introduce and apply the concepts of rings, finite fields and polynomials.
  • To understand the basic concepts in number theory
  • To examine the key questions in the Theory of Numbers.
  • To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

UNIT I GROUPS AND RINGS                                        12

Groups : Definition – Properties – Homomorphism – Isomorphism – Cyclic groups – Cosets – Lagrange’s theorem. Rings: Definition – Sub rings – Integral domain – Field – Integer modulo n – Ring homomorphism.

UNIT II FINITE FIELDS AND POLYNOMIALS               12

Rings – Polynomial rings – Irreducible polynomials over finite fields – Factorization of polynomials over finite fields.

UNIT III DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS                                                       12

Division algorithm – Base – b representations – Number patterns – Prime and composite numbers – GCD – Euclidean algorithm – Fundamental theorem of arithmetic – LCM.

UNIT IV DIOPHANTINE EQUATIONS AND CONGRUENCES                                                            12

Linear Diophantine equations – Congruence‘s – Linear Congruence‘s – Applications: Divisibility tests – Modular exponentiation-Chinese remainder theorem – 2 x 2 linear systems.

UNIT V CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS                                     12

Wilson‘s theorem – Fermat‘s little theorem – Euler‘s theorem – Euler‘s Phi functions – Tau and Sigma functions.

                                                                                                      TOTAL: 60 PERIODS

OUTCOMES:

Upon successful completion of the course, students should be able to:

  • Apply the basic notions of groups, rings, fields which will then be used to solve related problems.
  • Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.
  • Demonstrate accurate and efficient use of advanced algebraic techniques.
  • Demonstrate their mastery by solving non – trivial problems related to the concepts, and by proving simple theorems about the, statements proven by the text.
  • Apply integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

TEXTBOOKS:

1. Grimaldi, R.P and Ramana, B.V., “Discrete and Combinatorial Mathematics”, Pearson Education, 5th Edition, New Delhi, 2007.
2. Koshy, T., ―Elementary Number Theory with Applications‖, Elsevier Publications, New Delhi, 2002.

REFERENCES:

1. Lidl, R. and Pitz, G, “Applied Abstract Algebra”, Springer Verlag, New Delhi, 2nd Edition, 2006.
2. Niven, I., Zuckerman.H.S., and Montgomery, H.L., ―An Introduction to Theory of Numbers‖, John Wiley and Sons , Singapore, 2004.
3. San Ling and Chaoping Xing, ―Coding Theory – A first Course‖, Cambridge Publications, Cambridge, 2004.

LEAVE A REPLY

Please enter your comment!
Please enter your name here