EC8093-DIGITAL IMAGE PROCESSING Syllabus 2017 Regulation

0
609

EC8093-DIGITAL IMAGE PROCESSING Syllabus 2017 Regulation

DIGITAL IMAGE PROCESSING Syllabus 2017 Regulation,EC8093-DIGITAL IMAGE PROCESSING Syllabus 2017 Regulation

EC8093                                 DIGITAL IMAGE PROCESSING                             L P T C                                                                                                                             3 0 0 3

OBJECTIVES:

  • To become familiar with digital image fundamentals
  • To get exposed to simple image enhancement techniques in Spatial and Frequency domain.
  • To learn concepts of degradation function and restoration techniques.
  • To study the image segmentation and representation techniques.
  • To become familiar with image compression and recognition methods

UNIT I DIGITAL IMAGE FUNDAMENTALS                     9

Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels – Color image fundamentals – RGB, HSI models, Two-dimensional mathematical preliminaries, 2D transforms – DFT, DCT.

UNIT II IMAGE ENHANCEMENT                                     9

Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering–Smoothing and Sharpening Spatial Filtering, Frequency Domain: Introduction to Fourier Transform– Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters, Homomorphic filtering, Color image enhancement.

UNIT III IMAGE RESTORATION                                      9

Image Restoration – degradation model, Properties, Noise models – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering

UNIT IV IMAGE SEGMENTATION                                   9

Edge detection, Edge linking via Hough transform – Thresholding – Region based segmentation – Region growing – Region splitting and merging – Morphological processing- erosion and dilation, Segmentation by morphological watersheds – basic concepts – Dam construction – Watershed segmentation algorithm.

UNIT V IMAGE COMPRESSION AND RECOGNITION  9

Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG standard, MPEG. Boundary representation, Boundary description, Fourier Descriptor, Regional Descriptors – Topological feature, Texture – Patterns and Pattern classes – Recognition based on matching.

                                                                                                       TOTAL 45 PERIODS

OUTCOMES:

At the end of the course, the students should be able to:

  • Know and understand the basics and fundamentals of digital image processing, such as digitization, sampling, quantization, and 2D-transforms.
  • Operate on images using the techniques of smoothing, sharpening and enhancement.
  • Understand the restoration concepts and filtering techniques.
  • Learn the basics of segmentation, features extraction, compression and recognition methods for color models.

TEXT BOOKS:

1.
Rafael C. Gonzalez, Richard E. Woods,Digital Image Processing Pearson, Third Edition, 2010.
2.
Anil K. Jain,Fundamentals of Digital Image Processing Pearson, 2002.

REFERENCES:

  1. Kenneth R. Castleman,Digital Image Processing Pearson, 2006.
  2. Rafael C. Gonzalez, Richard E. Woods, Steven Eddins,Digital Image Processing using MATLAB Pearson Education, Inc., 2011.
  3. D,E. Dudgeon and RM. Mersereau,Multidimensional Digital Signal Processing Prentice Hall Professional Technical Reference, 1990.
  4. William K. Pratt,Digital Image Processing John Wiley, New York, 2002
  5. Milan Sonka et al Image processing, analysis and machine vision Brookes/Cole, Vikas Publishing House, 2nd edition, 1999

LEAVE A REPLY

Please enter your comment!
Please enter your name here